Parallelization
Parallelization
Parallelization is a pattern where multiple tasks are executed simultaneously to improve performance and efficiency.
Basic Structure
states:
- id: start
type: initial
next: parallel_tasks
- id: parallel_tasks
type: parallel
branches:
- id: task1
states:
- id: start
type: initial
next: process_task1
- id: process_task1
type: tool
tool: process_data
input:
data: "${input.data1}"
- id: task2
states:
- id: start
type: initial
next: process_task2
- id: process_task2
type: tool
tool: process_data
input:
data: "${input.data2}"
next: combine_resultsCommon Use Cases
1. Data Processing
states:
- id: start
type: initial
next: parallel_processing
- id: parallel_processing
type: parallel
branches:
- id: validate_data
states:
- id: start
type: initial
next: run_validation
- id: run_validation
type: tool
tool: validate_data
input:
data: "${input.data}"
- id: enrich_data
states:
- id: start
type: initial
next: run_enrichment
- id: run_enrichment
type: tool
tool: enrich_data
input:
data: "${input.data}"
- id: transform_data
states:
- id: start
type: initial
next: run_transformation
- id: run_transformation
type: tool
tool: transform_data
input:
data: "${input.data}"
next: merge_results2. Content Analysis
states:
- id: start
type: initial
next: parallel_analysis
- id: parallel_analysis
type: parallel
branches:
- id: sentiment_analysis
states:
- id: start
type: initial
next: analyze_sentiment
- id: analyze_sentiment
type: llm
model: sentiment_analyzer
prompt: "Analyze sentiment: {text}"
input:
text: "${input.content}"
- id: topic_extraction
states:
- id: start
type: initial
next: extract_topics
- id: extract_topics
type: llm
model: topic_extractor
prompt: "Extract main topics: {text}"
input:
text: "${input.content}"
- id: keyword_analysis
states:
- id: start
type: initial
next: analyze_keywords
- id: analyze_keywords
type: llm
model: keyword_analyzer
prompt: "Extract keywords: {text}"
input:
text: "${input.content}"
next: combine_analysis3. API Integration
states:
- id: start
type: initial
next: parallel_apis
- id: parallel_apis
type: parallel
branches:
- id: weather_api
states:
- id: start
type: initial
next: fetch_weather
- id: fetch_weather
type: tool
tool: weather_api
input:
location: "${input.location}"
- id: news_api
states:
- id: start
type: initial
next: fetch_news
- id: fetch_news
type: tool
tool: news_api
input:
location: "${input.location}"
- id: traffic_api
states:
- id: start
type: initial
next: fetch_traffic
- id: fetch_traffic
type: tool
tool: traffic_api
input:
location: "${input.location}"
next: combine_api_dataAdvanced Patterns
1. Dynamic Parallelization
states:
- id: start
type: initial
next: determine_tasks
- id: determine_tasks
type: llm
model: task_planner
prompt: |
Determine required tasks for:
{input}
Return as JSON array of task names
input:
input: "${input.request}"
next: parallel_execution
- id: parallel_execution
type: parallel
branches: "${output.map(task => ({
id: task,
states: [
{
id: 'start',
type: 'initial',
next: 'execute'
},
{
id: 'execute',
type: 'tool',
tool: task,
input: {
data: '${input.data}'
}
}
]
}))}"
next: combine_results2. Conditional Parallelization
states:
- id: start
type: initial
next: check_conditions
- id: check_conditions
type: llm
model: condition_checker
prompt: |
Determine which tasks to run in parallel:
{input}
Return as JSON:
{
"tasks": ["task1", "task2"],
"reason": "explanation"
}
input:
input: "${input.request}"
next: parallel_tasks
- id: parallel_tasks
type: parallel
branches: "${output.tasks.map(task => ({
id: task,
states: [
{
id: 'start',
type: 'initial',
next: 'execute'
},
{
id: 'execute',
type: 'tool',
tool: task,
input: {
data: '${input.data}'
}
}
]
}))}"
next: combine_results3. Error Handling in Parallel Tasks
states:
- id: start
type: initial
next: parallel_with_error_handling
- id: parallel_with_error_handling
type: parallel
branches:
- id: task1
states:
- id: start
type: initial
next: execute_task1
- id: execute_task1
type: tool
tool: task1
input:
data: "${input.data}"
error:
next: handle_task1_error
- id: handle_task1_error
type: tool
tool: error_handler
input:
error: "${error}"
task: "task1"
- id: task2
states:
- id: start
type: initial
next: execute_task2
- id: execute_task2
type: tool
tool: task2
input:
data: "${input.data}"
error:
next: handle_task2_error
- id: handle_task2_error
type: tool
tool: error_handler
input:
error: "${error}"
task: "task2"
next: combine_resultsBest Practices
- Task Independence: Ensure parallel tasks are independent
- Resource Management: Monitor and limit concurrent tasks
- Error Handling: Implement proper error handling for each branch
- Result Aggregation: Plan how to combine parallel results
- Timeout Management: Set appropriate timeouts for parallel tasks
- Monitoring: Track progress and performance of parallel tasks
Common Pitfalls
- Task Dependencies: Creating dependencies between parallel tasks
- Resource Exhaustion: Running too many parallel tasks
- Error Propagation: Not handling errors in parallel branches
- Result Synchronization: Issues with combining parallel results
- Timeout Issues: Not setting appropriate timeouts
Next Steps
- Learn about Orchestrator-Workers
- Explore Best Practices
- Read about Error Handling
Last updated on