Resource Management

This guide covers best practices for managing resources in NudgeLang applications.

Memory Management

1. Context Management

states:
  - id: process_state
    type: tool
    tool: process_data
    input:
      data: "${input.data}"
    context:
      max_size: 1000
      cleanup:
        strategy: lru
        threshold: 0.8

2. Data Cleanup

states:
  - id: cleanup_state
    type: tool
    tool: process_data
    input:
      data: "${input.data}"
    cleanup:
      after: completion
      resources:
        - temp_files
        - cache
        - connections

API Rate Limiting

1. Basic Rate Limiting

states:
  - id: api_state
    type: tool
    tool: external_api
    input:
      data: "${input.data}"
    rate_limit:
      requests: 100
      period: 60
      strategy: token_bucket

2. Advanced Rate Limiting

states:
  - id: api_state
    type: tool
    tool: external_api
    input:
      data: "${input.data}"
    rate_limit:
      requests: 100
      period: 60
      strategy: token_bucket
      burst: 20
      retry:
        max_attempts: 3
        delay: 1000
        backoff: exponential

Connection Pooling

1. Database Connections

states:
  - id: db_state
    type: tool
    tool: database
    input:
      query: "${input.query}"
    connection:
      pool:
        min: 5
        max: 20
        idle_timeout: 30000
        max_lifetime: 3600000

2. API Connections

states:
  - id: api_state
    type: tool
    tool: external_api
    input:
      data: "${input.data}"
    connection:
      pool:
        min: 10
        max: 50
        idle_timeout: 60000
        max_lifetime: 7200000
      timeout: 5000
      keep_alive: true

Resource Cleanup

1. Automatic Cleanup

states:
  - id: process_state
    type: tool
    tool: process_data
    input:
      data: "${input.data}"
    cleanup:
      automatic: true
      resources:
        - temp_files
        - cache
        - connections
      on:
        - completion
        - error
        - timeout

2. Manual Cleanup

states:
  - id: cleanup_state
    type: tool
    tool: cleanup_resources
    input:
      resources: "${input.resources}"
    cleanup:
      manual: true
      resources:
        - temp_files
        - cache
        - connections
      verify: true

Resource Monitoring

1. Basic Monitoring

states:
  - id: monitor_state
    type: tool
    tool: process_data
    input:
      data: "${input.data}"
    monitoring:
      resources:
        - memory
        - cpu
        - connections
      threshold:
        memory: 0.8
        cpu: 0.7
        connections: 0.9

2. Advanced Monitoring

states:
  - id: monitor_state
    type: tool
    tool: process_data
    input:
      data: "${input.data}"
    monitoring:
      resources:
        - memory
        - cpu
        - connections
        - disk
        - network
      threshold:
        memory: 0.8
        cpu: 0.7
        connections: 0.9
        disk: 0.85
        network: 0.75
      alerts:
        - type: email
          threshold: 0.9
        - type: slack
          threshold: 0.95

Best Practices

  1. Resource Limits: Set appropriate resource limits
  2. Cleanup: Implement proper resource cleanup
  3. Monitoring: Monitor resource usage
  4. Optimization: Optimize resource usage
  5. Documentation: Document resource management
  6. Testing: Test resource management
  7. Security: Secure resource access

Common Pitfalls

  1. Resource Leaks: Not cleaning up resources
  2. Over-allocation: Allocating too many resources
  3. Under-monitoring: Insufficient resource monitoring
  4. Poor Optimization: Inefficient resource usage
  5. Insecure Access: Inadequate resource security

Next Steps

Last updated on