Performance
This guide covers best practices for optimizing performance in NudgeLang applications.
Caching Strategies
1. Basic Caching
states:
- id: cache_state
type: tool
tool: process_data
input:
data: "${input.data}"
cache:
key: "${input.data}"
ttl: 3600
strategy: memory2. Advanced Caching
states:
- id: cache_state
type: tool
tool: process_data
input:
data: "${input.data}"
cache:
key: "${input.data}"
ttl: 3600
strategy: distributed
options:
backend: redis
cluster: true
compression: true
invalidation:
pattern: "data:*"
events:
- update
- deleteParallel Processing
1. Basic Parallelization
states:
- id: parallel_state
type: parallel
branches:
- id: task1
states:
- id: start
type: initial
next: process_task1
- id: process_task1
type: tool
tool: process_data
input:
data: "${input.data1}"
- id: task2
states:
- id: start
type: initial
next: process_task2
- id: process_task2
type: tool
tool: process_data
input:
data: "${input.data2}"2. Advanced Parallelization
states:
- id: parallel_state
type: parallel
branches:
- id: task1
states:
- id: start
type: initial
next: process_task1
- id: process_task1
type: tool
tool: process_data
input:
data: "${input.data1}"
options:
max_concurrent: 5
timeout: 5000
error_handling: continue
resource_limits:
memory: 100
cpu: 50Resource Optimization
1. Memory Optimization
states:
- id: optimize_state
type: tool
tool: process_data
input:
data: "${input.data}"
optimization:
memory:
max_usage: 100
cleanup:
strategy: immediate
threshold: 0.8
pooling:
enabled: true
max_size: 10002. CPU Optimization
states:
- id: optimize_state
type: tool
tool: process_data
input:
data: "${input.data}"
optimization:
cpu:
max_usage: 80
threads:
min: 2
max: 8
affinity:
enabled: true
cores: [0, 1]Monitoring and Profiling
1. Basic Monitoring
states:
- id: monitor_state
type: tool
tool: process_data
input:
data: "${input.data}"
monitoring:
metrics:
- response_time
- memory_usage
- cpu_usage
threshold:
response_time: 1000
memory_usage: 80
cpu_usage: 702. Advanced Monitoring
states:
- id: monitor_state
type: tool
tool: process_data
input:
data: "${input.data}"
monitoring:
metrics:
- response_time
- memory_usage
- cpu_usage
- throughput
- error_rate
threshold:
response_time: 1000
memory_usage: 80
cpu_usage: 70
throughput: 1000
error_rate: 0.01
profiling:
enabled: true
interval: 60
depth: 10
alerts:
- type: email
threshold: 0.9
- type: slack
threshold: 0.95Load Balancing
1. Basic Load Balancing
states:
- id: load_balance_state
type: tool
tool: process_data
input:
data: "${input.data}"
load_balancing:
strategy: round_robin
servers:
- server1
- server2
- server32. Advanced Load Balancing
states:
- id: load_balance_state
type: tool
tool: process_data
input:
data: "${input.data}"
load_balancing:
strategy: weighted_round_robin
servers:
- name: server1
weight: 3
health_check: true
- name: server2
weight: 2
health_check: true
- name: server3
weight: 1
health_check: true
options:
sticky: true
timeout: 5000
retry: 3Best Practices
- Caching: Implement appropriate caching
- Parallelization: Use parallel processing
- Resource Management: Optimize resource usage
- Monitoring: Monitor performance metrics
- Load Balancing: Distribute load effectively
- Documentation: Document performance optimizations
- Testing: Test performance improvements
Common Pitfalls
- Over-caching: Excessive caching
- Resource Exhaustion: Not managing resources
- Poor Monitoring: Insufficient performance monitoring
- Inefficient Parallelization: Poor parallel processing
- Load Imbalance: Uneven load distribution
Next Steps
- Learn about Documentation
- Explore Error Handling
- Read about Testing
Last updated on